Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercin

Vocabulary: Fill in the blanks.

- 1. _____ is a branch of mathematics that studies rates of change of functions.
- 2. The _____ to the graph of a function at a point is the line whose slope best approximates the slope of the graph at the point.
- 3. The slope of the tangent line to a graph at (x, f(x)) is given by m =
- 4. The _____ f'(x) is the formula for the slope of the tangent line to the graph of f at the point (x, f(x)).

Skills and Applications

Approximating the Slope of a Graph In Exercises 5-8, use the figure to approximate the slope of the graph at the point (x, y).

Approximating the Slope of a Tangent Line In Exercises 9-14, sketch a graph of the function and the tangent line at the point (1, f(1)). Use the graph to approximate the slope of the tangent line. 10. $f(x) = x^2 - 2x + 1$ 11. $f(x) = \sqrt{2-x}$

9.
$$f(x) = x^2 - 2$$

10.
$$f(x) = x^2 - 2x + 1$$

11.
$$f(x) = \sqrt{2-x}$$

12.
$$f(x) = \sqrt{x+3}$$

13.
$$f(x) = \frac{4}{x+1}$$
 14. $f(x) = \frac{3}{2-x}$

14.
$$f(x) = \frac{3}{2-x}$$

Finding the Slope of a Graph In Exercises 15-22, use the limit process to find the slope of the graph of the function at the specified point.

15.
$$g(x) = x^2 - 6x$$
, $(1, -5)$

16.
$$f(x) = 10x - 2x^2$$
, (3, 12)

17.
$$g(x) = 9 - 3x$$
, (2, 3)

18.
$$h(x) = 3x + 4$$
, $(-1, 1)$

19.
$$g(x) = \frac{4}{7} (2, 2)$$

19.
$$g(x) = \frac{4}{x}$$
, (2, 2) **20.** $g(x) = \frac{1}{x-4}$, (3, -1)

1.
$$h(x) = \sqrt{x}$$
, (9, 3)

21.
$$h(x) = \sqrt{x}$$
, (9, 3) **22.** $h(x) = \sqrt{x+8}$, (-4, 2)

Finding a Formula for the Slope of a Graph In Exercises 23-28, find a formula Graph In East for the slope of the graph of f at the point the slope use it to find the slope for the slope of (x, f(x)). Then use it to find the slope at the

23.
$$f(x) = 4 - x^2$$

$$= 4 - x^2$$
 24. $f(x) = x^3$ (a) (1, 1)

(a)
$$(0, 4)$$

(b) $(-1, 3)$

(b)
$$(-2, -8)$$

25.
$$f(x) = \frac{1}{x+4}$$

26.
$$f(x) = \frac{1}{x+2}$$

(a)
$$(0, \frac{1}{4})$$

(a)
$$(0, \frac{1}{2})$$

(b)
$$\left(-2, \frac{1}{2}\right)$$

(b)
$$(-1, 1)$$

27.
$$f(x) = \sqrt{x-1}$$

28.
$$f(x) = \sqrt{x-4}$$

(a)
$$(5, 2)$$

(a)
$$(5, 1)$$

Finding a Derivative In Exercises 29-42 find the derivative of the function.

29.
$$f(x) = 6$$

30.
$$f(x) = -8$$

31.
$$g(x) = 2x - 7$$

32.
$$f(x) = -5x + 1$$

33.
$$f(x) = 2x^2 + 3x$$

34.
$$f(x) = x^2 - 3x + 4$$

35.
$$f(x) = x^{-2}$$

36.
$$f(x) = x^{-3}$$

37.
$$f(x) = \sqrt{x-7}$$

38.
$$g(x) = \sqrt{x+9}$$

$$39. \ h(x) = \frac{1}{x+1}$$

40.
$$f(x) = \frac{1}{x-8}$$

41.
$$f(x) = \frac{1}{\sqrt{x-4}}$$

42.
$$h(x) = \frac{1}{\sqrt{x+1}}$$

Using the Derivative In Exercises 43–50. (a) find the slope of the graph of f at the given point, (b) find an equation of the tangent line to the graph at the point, and (c) graph the function and the tangent line.

43.
$$f(x) = x^2 - 1$$
, (2, 3) **44.** $f(x) = 6x - x^2$, (1, 5)

45.
$$f(x) = x^3 - 2x$$
, $(1, -1)$

46.
$$f(x) = x^3 - x^2$$
, (2, 4)